Jour. Ind. Soc. Ag. Statistics Vol. XLII, No. 2 (1990), pp. 239-243

A NEW CLASS OF RECTANGULAR DESIGNS

KALYAN KUMAR GOSWAMI*, ANURUP MAZUMDER** and SATYABRATA PAL (Received : March, 1989)

SUMMARY

A new class of partially balanced incomplete block (PBIB) design based on rectangular association scheme has been obtained through the development of Q_2 Arrays.

Keywords: Partially Balanced Incomplete Block Design, Rectangular Design, and Q_2 Arrays.

Introduction

The rectangular association scheme is a three class association scheme introduced by Vartak [8]. A partially balanced incomplete block (PBIB) design with v (=mn) symbols arranged in a rectangle of mrows and n columns follows a rectangular design (RD), if with respect to each symbol, the first associates are the other n - 1 symbols of the row, the second associates are the other m - 1 symbols of the same column, and the remaining (m-1)(n-1) symbols are the third associates. For this association scheme, $n_1 = n - 1$, $n_2 = n - 1$, $n_3 = (m - 1)(n - 1)$. In fact, a RD is a PBIB design $(mn, b, r, k, \lambda_1, \lambda_3, \lambda_3)$, the symbols having usual significance. The following relations among the parameters hold:

Jute Agricultural Research Institute, Barrackpore-743101.
 *Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia - 741252.

JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

(i) mn. r = b. k. and (ii) $(n - 1) \cdot \lambda_1 + (m - 1) \cdot \lambda_2 + (m - 1) (n - 1) \cdot \lambda_2 = r. (k - 1).$

The existing literature reveals that different classes of rectangular designs have been obtained in the following communications, viz. Agarwal [1], [2]. Agarwal and Singh [3], Bhagwandas *et al.* [4], Gill [5] and Puri, *et al.* [7].

In this communication a new method of construction of rectangular designs has been developed from Q_2 arrays (definition 1.2).

The following matrix operations will be used in the latter section.

Let $A^{r_1 \times n_1} = (a_{ij})$ and $B^{r_2 \times n_2} = (b_{ij})$ be two matrices whose elements belong to Σ , Σ being a finite module containing s elements.

(1) Let, $r_1 = r_2 = r$, $A \oplus B$ is an $r \times n_1 n_2$ matrix where for any column of A, say α_i , and any column of B, say β_j , we define a column $\alpha_i + \beta_j$ of $A \oplus B$, where the location of this column is situated at the $[(i-1) n_2 + j]$ the column $i = 1, 2, ..., n_i$; $j = 1, 2, ..., n_2$, the symbol \oplus representing the usual vector addition. It is to be noted that the sum of $\alpha_i + \beta_j$ is to be reduced under mod's system.

DEFINITION 1.1 Let, $X = (x_1, x_2, ..., x_m)'$ to be a column vector and $Y_1, Y_2, ..., Y_m)'$ be another column vector. The symbolic inner product of X and Y is defined by a column vector $X \odot Y = (x_1 y_1, x_2 y_2, ..., x_m y_m)'$.

Let $\alpha_i = (\alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_t})$ be s^i , t-tuples where $\alpha_{jj} \in \Sigma$, $i = 1, 2, \ldots, s^i$ and $j = 1, 2, \ldots, t$.

: N

DEFINITION 1.2. Two tuples α_i and α_{i1} are said to be independent If $\alpha'_i \neq \alpha_x J^{i\times 1} + \alpha_i$ for $(i \neq i')$ and $\alpha_x \in \Sigma$, $J^{i\times 1}$ being a $t \times 1$ matrix with elements unit only.

In case of equality, the two tuples α_i and α_i , become mutually dependent. There exists s^{i-1} independent *t*-tuples in the set of s^{i} *t*-tuples.

It is always possible to obtain s^{t-1} different sets of t tuples, each set containing s-number of mutually dependent t-tuples. The congregation of such s^{t-1} different sets constitute all possible s^t different t-tuples. DEFINITION 1.3 An array Q_t (μs^{t-1} , r, s) containing r rows and s^{t-1} column with elements belonging to Σ , is such that in every t-rowed submatrix of Q_t , μ -number of (distinct of indistinct) t-tuples appear from each set of s^{t-1} different sets and μ are the sets of the table μ and μ are the sets of the table μ and μ are the table μ and μ are the table μ and μ are table μ are table μ and μ are table

The Ot arrays are similar to St arrays defined in Mukhopadhyay [6].

240

RECTANGULAR DESIGNS

2. Method of Construction

The multiplication table constructed with elements from Σ provides a Q_2 (s, s, s), where s is a prime or prime power.

THEOREM. Let $md = s \cdot 1$ where m and d are both positive integers greater than one (>1) the existence of Q_1 (s, s, s,) implies the existence of RD $(ms, s (s - 1), d (s - 1), (s - 1), d (d - 1), 0, d^2)$,

Proof: (by construction). Let A be a Q_3 (s, s, s) where s is a prime or prime power and obtained from the multiplication table of s elements, where s GF (S). Since A is obtained from the multiplication table there exist one row and one column of A whose all elements are null. Delete the null row and null column from A, and denote the resulting array by $A' [(s-1) \times (s-1)]_1$

From $A' [(s-1) \times (s-1)]$ construct the matrix $B_i (s-1) \times (s-1) = \alpha_i J (s-1) \times 1$ $\oplus A' (s-1) \times (s-1)$, i = 0, 1, 2, ..., (s-1), where $\alpha_i \in GF(s)$ and $J (s-1) \times 1$ is an $(s-1) \times 1$ matrix whose all elements are unit only, in particular $\alpha_0 = 0$ and $B_0 = A'$.

Now obtain,

 $B^{(s-1)\times \overline{s(s-1)}} = [B_0 \mid B_1 \mid B_2 \dots, \mid B_{s-1}]$

Let $X = (x_{11}, x_{12}, \ldots, x_{1m}, x_{21}, \ldots, x_{2m}, \ldots, x_{d1}, \ldots, x_{dm})'$ be a column vector, where $x_{ij} = x_{i'j}$ for $i' \neq i'$; $i = 1, 2, \ldots, d, j = 1, 2, \ldots, m$ and x_{ij} 's are m distinct integers belonging to the set 0, 1, 2, ..., m - 1 for each j, m < s.

The symbolic inner product of column vector x with each column of the array B provides s(s - 1) blocks of the RD (ms, s(s - 1), d(s - 1), (s-1); $d(d-1) 0, d^3$), where dm = s - 1.

Illustration. Take B_a as :

• .					- ግ
1.	2	3	4	5	6
2	4	6	1	3	5
3	6	2	5.	1	4
4	1	5 ·	2	6	⁻ 3
5 ·	3	1	6	4	2
6	5	4	3	2	1

242 JOURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

The following two designs D_1 and D_2) can be obtained by taking the symbolic inner products of B_0, B_1, \ldots, B_6 with x_1 and x_2 respectively, where $x_1 = (0, 1, 2, 0, 1, 2)$ and $x_2 = [(0, 1, 0, 1, 0, 1,).$

The parameters of *R D*, (*D*₁ for x_1 are $D_1 : V = 21$, b = 42, r = 12, k = 6, $\lambda_1 = 2$, $\lambda_2 = 0$, $\lambda_3 = 4$ and the parameters of *RD*, D_2 for x_2 are $D_2 : V = 14$, b = 42, r = 18, k = 6, $\lambda_1 = 6$, $\lambda_2 = 0$, $\lambda_3 = 9$.

J	01	02	03	04	05	06	02	03	04	05	0 6	00	03	04	05	06	00	01
	12	14	16	11	13	15	13	15	10	12	14	16	14	16	11	13	15	10
· · ·	23	26	22	25	21	24	24	20	23	26	22	25	25	21	24	20	23	26
$D_1^{6\times42}$	04	01	05	01	06	03	05	02	06	03	00	04	06	03	<u>00</u>	04	01	05
14.71	:15	13	11:	16	14	-12	16	14	12	10	15	13	10	15	13	11	16	14
а. 5 <u>1</u> 1-а	26 L	2 5	24	23	22	21	20	26	25	24	23	22	21	20	26	25	24	23
	04	05	06	00	01	02	05	Q 6	00	01	02	03	06	00	01	02	03	04
	15	10	12	14	16	11	16	11	13	15	10	12	10	12	14	16	11	13
	26	22	25	21	24	20	20	23	2 6	22	-25	21	21	24	20	23	2 6	22
	, 00	04	01	05	02	06	01	05	02	<u>0</u> 6	Ò3	0 0	02	06	03	00	04	01
	15	16	14	12	10	15	12	10	15	13	11	16	13	11	16	14	12	10
а. А. А. А.	22	21	20	26	25	24	23	22	21	20	26	-25	24	23	22	21	20	26
-		,					.00	01	02	03	04	05	ן					. •
•) X			-		11	13	15	10	12	2 14			<i>r</i> .	•		

 22
 25
 21
 24
 20
 23

 03
 00
 04
 01
 05
 02

 14
 12
 10
 15
 13
 11

 25
 24
 23
 22
 21
 20

ACKNOWLEDGEMENTS

The authors would like to thank the referee for his helpful suggestions.

RECTANGULAR DESIGNS

 $\{\cdot\}$

REFERENCES

243

- [1] Agarwal, K. R. (1975) : Analysis of EGD and hypercubic designs as factorial experiments. Austral. J. Statist. 17 36-42.
- [2] Agarwal, K. R. (1977): Block structure of certain series of EGD and hypercubic designs. J. Indian Soc. Agril. Statist. 29: 19-23.
- [3] Agarwal, K. R. and Singh, T. P. (1981): Methods of construction of balanced arrays with application to factorial designs. *Calcutta Statist. Assoc. Bull.* 30: 89-93.
- [4] Bhagwandas, Banerjee, Kageyama, S. (1985) : Patterned construction of partially balanced incomplete block designs. Commun. Statist. Theor. Method, 14 (6), 1259-67.
- [5] Gill, P. S. (1986) : Balanced incomplete arrays. J. Statist. Planning and Inf., 14: 179-185
- [6] Mukhopadhyay, A. C. (1981): Construction of certain series of Orthogonal arrays. Sankhya (B) 43: 81-92.
- [7] Puri P. D., Mehta, B. D. Kageyama, S. (1987) : Patterned constructions of partially efficiency-balanced designs. J. Statist. Plann. and Inf., 15: 65-378..
- [8] Vartak, M. N. (1955) : On an application of Kronecker product of matrices to statistical designs. Ann. Math. Statist., 26 : 420-408.